Bootstrap confidence intervals in multi-level simultaneous component analysis.
نویسندگان
چکیده
Multi-level simultaneous component analysis (MLSCA) was designed for the exploratory analysis of hierarchically ordered data. MLSCA specifies a component model for each level in the data, where appropriate constraints express possible similarities between groups of objects at a certain level, yielding four MLSCA variants. The present paper discusses different bootstrap strategies for estimating confidence intervals (CIs) on the individual parameters. In selecting a proper strategy, the main issues to address are the resampling scheme and the non-uniqueness of the parameters. The resampling scheme depends on which level(s) in the hierarchy are considered random, and which fixed. The degree of non-uniqueness depends on the MLSCA variant, and, in two variants, the extent to which the user exploits the transformational freedom. A comparative simulation study examines the quality of bootstrap CIs of different MLSCA parameters. Generally, the quality of bootstrap CIs appears to be good, provided the sample sizes are sufficient at each level that is considered to be random. The latter implies that if more than a single level is considered random, the total number of observations necessary to obtain reliable inferential information increases dramatically. An empirical example illustrates the use of bootstrap CIs in MLSCA.
منابع مشابه
Simultaneous confidence intervals based on the percentile bootstrap approach
This note concerns the construction of bootstrap simultaneous confidence intervals (SCI) for m parameters. Given B bootstrap samples, we suggest an algorithm with complexity of O(mB log(B)). We apply our algorithm to construct a confidence region for time dependent probabilities of progression in multiple sclerosis and for coefficients in a logistic regression analysis. Alternative normal based...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملBootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...
متن کاملSimultaneous confidence intervals by iteratively adjusted alpha for relative effects in the one-way layout
A bootstrap based method to construct 1−α simultaneous confidence intervals for relative effects in the one-way layout is presented. This procedure takes the stochastic correlation between the test statistics into account and results in narrower simultaneous confidence intervals than the application of the Bonferroni correction. Instead of using the bootstrap distribution of a maximum statistic...
متن کاملSimultaneous Confidence Intervals for Semiparametric Logistics Regression and Confidence Regions for the Multi-dimensional Effective Dose
We construct pointwise and simultaneous confidence intervals for the link function in a semiparametric logistic regression model based on the logit link function. Simultaneous confidence intervals are especially important for semiparametirc regression models since they allow inference to be made over the whole predictor space. These intervals are used to construct confidence regions for the mul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The British journal of mathematical and statistical psychology
دوره 62 Pt 2 شماره
صفحات -
تاریخ انتشار 2009